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ON THE ANALOGUES AND GENERALIZATIONS OF SQUIRE'S THEOREM* 

S.YA. BELOV and V.A. VLADIMIROV 

Assertions consistent with Squire's theorem /l/ based on the simultaneous 
or separate consideration of the factors responsible for the non-linearity 
of the motion and the non-stationarity of the fluid flow whose stability 
is investigated, are studied. The results may be of interest from the 
point of view of the practical applications, and can also be used to 
solve the problem of the degree of generality of the reasons governing 
the existence of assertions of the type of Squire's theorem. 

In the best known, classical version of the linear problem of the stability of the plane 
parallel flow of an incompressible fluid with constant density and viscosity parameters, 
Squire's theorem consists, in fact, of two assertions. 

A. Equations determining the dynamics of three-dimensional perturbations (in the form of 
normal waves) can be reduced, by means of some transformation, to the equations for plane 
perturbations. This means that the three-dimensional perturbation and the corresponding plane 
perturbation are stable or unstable simultaneously. 

B. The expression for the coefficient of kinematic viscosity occurring in the course of 
transformation A, is used as the basis for drawing conclusions on the loss of stability under 
plane perturbations when the viscosity is greater (a smaller Reynolds number of the basic flow) 
than in the case of three-dimensional perturbations. 

The analogues of Squire's theorem for a compressible /2/ or stratified /3/ fluid are 
restricted to assertion A. In the gas-dynamic formulation the situation with assertion B can 
become reversed, with the three-dimensional perturbations becoming more "dangerous" than the 
plane ones. The absence, in general, of any indication of which are the most dangerous 
perturbations, makes these analogues less useful, although they are also undoubtedly important 
from the point of view of simplifying the problem and reducing it to the "canonical" formulation 
concerning the stability of a plane parallel flow under plane perturbations. 

1. Translationally invariant motions. We consider the motion of a viscous, 
incompressible fluid of constant density, between two parallel planes 5 =-+H, in a Cartesian 
coordinate system E,n, 5. The equations of motion of the fluid for the velocity components 

%, u0, wO, pressure p and the boundary conditions, can be written in the form 

D,u, = -p6 -I vAu, + lo (5, t) (1.1) 
Doz., = -pq -;- ~Au, + g, (5, 1), D,wu, = -pg f vAwO 

uO~+I:olliu~o~-o; D,=&-UO-g+"O++ZL.O& 
3 

5 = 1_H, u,, = U* (t), u. = V* (t), w. = 0 (1.2) 

Here Y is the constant coefficient of kinematic viscosity, the density p E 1, A is the 
three-dimensional Laplace operator. The indices with independent variables denote the 
corresponding partial derivatives, the field f(?&t) of external mass forces depends on the 
coordinate 5 and time t only. We will assume, without loss of generality, that the force 
component Z; is equal to zero: f = (fo, go, 0). 

After specifying the suitable initial conditions for (1.1) and (1.2), we obtain the 
initial boundary value problem, and we shall study the properties of its solution. 

Eqs.(l.l) and boundary conditions (1.2) are invariant under displacements along the E 
and q axes, therefore it makes sense to consider translationally invariant solutions possessing 
the same symmetry. In order to describe the motions belonging to this class, we introduce the 
following unit vector defining the direction: 

n = u (8) = (-sin 8, cos 8, 0), 0 < 13 < TI (1.3) 

lying in the En plane and making an angle 8 with the n axis. We denote by To the set of 
all translationally invariant solutions in which the hydrodynamic fields (u and Vp) remain 
unchanged at any instant t when the coordinate system is displaced alongthevector n(8). It 
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is clear that Te contains a set of plane motions for which u-n = 0. 
In the case of motions belonging to the class Te we eliminate the dependence of the 

hydrodynamic fields on one of the spatial variables, by rotating the coordinate system about 
the 5 axis by an angle 8. In the new axes of the Cartesian coordinate system x,Y,z we denote 
the velocity components by U, V,W, and we have the following relations: 

5 = f cos e -f- 3 sin e, y = -_5 sin e + q cos e, 2 = 5 W) 
tl = ug eos e -I- uO sin e, v = -U@ sin e -+ ug cos 8, w = 26~~ 

The following functional relations also hold: 

11 = 28 (I, 2, t), u = v (s, 2, t), w = w (5, 2, t) p = p (5, 2, t) - A (t) Y (1.5) 

In the expression for the pressure given in (l.S), the term containing the function A (t) 
corresponds to the already mentioned invariance of the field Vp (and not of p). In 2, Y, r 
coordinates problem (l.l), (1.2) for the motions (1.5) reduces to a form which can be con- 
veniently written as a sequence of two problems. 

Problem 1. (the "plane" problem) 

&A = -or -I- Y&U + f, L&V = --Pr + v&w (1.6) 

Problem 2. (the "one-dimensional" problem) 

Dv= A +vk,v+g; z=-&H, U=I Vrt (1.7) 

Here f and g are the x- and y-components of the force f, expressed in terms of f,, and g, 
(1.1) as in (1.4). 

Problem 1 has two special features: 1) the component v does not appear in (1.61, therefore 
the latter can be solved independently of problem 2; 2) problem 1 is mathematically identical 
with the problem of describing the plane motions. In problem 2 the components uand w partici- 
pate through the operator D. Therefore, the unknown function v(x,z,t) appearing in (1.7) 
can be determined only after problem 1 has been solved. Below we shall show that the facts 
mentioned above form the basis of Squire's theorem, as well as of some of its analogues and 
generalizations. 

2. Perturbations in slippage flows. The flows with layers slipping relative to 
each other 5 = const (called here slippage flows) 

260 = u, (5, 0, 0, = v, (5, t), w = 0 

P = pi3 6 rl) = -4 @) 5 -B, (Q 9 

(2.1) 

correspond to the exact solutions of problem (1.11, (1.2). The flows have velocity components 
U,(c,t), V,(<,t) and functions of time A,(t),B,(t) determining the pressure gradient, which 
satisfy the relations 

U,r = A, + vuotc f fo, vo, = 4 -I- VVOKf -t- go 

The special case of (2.1), (2.2) with 

v, G g, =B, ro 

is called plane-parallel flow. 

(2.2) 

(2.3) 

The investigation of the stability of the flow fZ.l), (2.2) reduces to a study of the 
behaviour of the perturbations (denoted here by primes) 

ug = U, + ug', V@ = v, + ugl, W* = W*', p = P, + p’ (2.4) 

and the boundary conditions are 5 = &H, Ug' = v,' = WO' = 0. 
Let the perturbation fields be translationally invariant with respect to some direction 

n(6) (1.3). It is clear that the complete solutions of (2.4) also belong to the class To. 
From the arguments presented in Sect.1 we have 

Assertion 1. The problem of describing the translationally invariant perturbations of 
the slippage flow (2.11, (2.2) can be separated into two problems, which can be solved con- 
secutively. 

Problzem la. 
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Problem 2a. 

DC' -+ l',rr.' == vLQ': z =z i_H, c' = 0 (,.t;) 

The absence of a zero subscript on the unknown functions in (2.5), (2.6) means that the 
z,y,z (1.4) system of coordinates is used. 

The proof of the Assertion 1 follows from relations (1.61, (1.7). 
Introducing into the plane parallel flow (2.1)-(2.3) the notation 

2L' = 21r cos 8, Lc' = ((‘1 cos 0, v‘ = c1 sin 0 

p’ = p1 cm* 8, v = VI cos 0, T = t cos e 

we obtain, from Assertion 1, 

Assertion 2. The problem of describing translationally invariant perturbations (belonging 
to the class I'@ when Of n/2) in plane parallel flow with a velocity profile U, (5, t), can be 
represented in the form of two successively solvable problems. 

Problem lb. 

Problem 2b. 

D,u, - U,,u, = v,A,L.~; z L= +H, ~3~ = 0 (2.8) 

The exception 8 == n/2 corresponds to the invariance of the perturbation fields along 
the direction of the velocity of the basic flow. Separate investigation leads to the formula- 
tion (2.5), (2.6) with u EZ 0, v = u,, and relations (2.5) correspond here to a simple problem 
of the decay of plane perturbations of the state of rest. 

3. The unimportance of "one-dimensional" problems. The fundamental step that 
follows consists of demonstrating the unimportance of the separated "one-dimensional" problems 
(2.6) or (2.8). To express it more accurately, we have to show that the one-dimensional 
problems contain no additional instabilities compared with the "plane" problems (2.5) or (2.7). 
Having proved this fact, we find that the analogues and generalizations of Squire's theorem 
follow as straightforward and obvious corollaries of Assertions 1 and 2. 

Assertion 3. We consider, in the strip 

II = {(z, Z, z): - 00 <z< 00, -H< z< H, T> 0) 

the linear parabolic equation 

pL9 = F&(F + a (x, z, 7) (r2 im b (z, Z, T) (or - ~'1 = I (x> z, 4 (3.1) 

where p is a positive constant; a, b and f are functions defined on n, continuous in all 
variables and subject to the following boundary constraints: 

supn I b I< C,, supn If I< C, (3.2) 

bet (~(z,z,') be the classical solution of (3.1) in n, satisfying the boundary condition 

'p (z, i-H, 4 = 0 (3.3) 
and taking the following initial values: 

cp (I, z, 0) = ‘p” (2, 2); (3.4) 
-H<r<H 

Moreover, let the solution ~(z,z,z) satisfy one of the following conditions: 
lo, When ~.r~+oo, the function cp (z,z,T)-+ 0 uniformly in z and r E IO, +I, where .* is 

an arbitrary positive number. 
2O. The function 'p(~,.z,~) is periodic in Z, i.e. there exists a value 0< x'< 00, such 

that 'p (z,z,T) = 'p (Z + X,2, r) for any x,z, r of II. 
Then the following estimate holds: 
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(3.5) 

The proof utilizes the technique given in /4/. We consider the function R(z)* phH-eh3, 
where h is an arbitrary positive constant. If we choose 2h>~-1C,+1/C,2~-e+ 4, then by virtue 
of (3.2) 

everywhere in II. 
We introduce the auxiliary quantities 

and a function 

defined in II, where e, A,,? are any positive constants and *>O. Having chosen y = r&-l, 
we can easily confirm that 

$ k. 2, 0) > A,,lir (2, f S, 7) > a, L$ < - 8 (3.7) 

The choice A,= C, yields, by virtue of (3.41, 9 (2, 2, 0) > tp b, ~~0). We also have W>cp 
at the boundaries z=*R by virtue of (3.3), (3.7). 

Now let M be a set of values o>,O, such, that the inequality 

cp<V (3.8) 

holds in the strip 
~,=((2,Z,9):-~<<5<00,--HgzdH,Odrg(5) 

This, together with condition lo (or 2O) guarantees that :* ==sup{Al}>O. 
Next we shall show thattheinequality (3.8) holds for all values of z>O. Let us assume 

the opposite, that t* is a finite quantity. Then the function SE*- cp will be strictly 
positive when z<t*, and negative when 7=t*, i.e. there exists a point @O,~O.t*) such that 
S(zO,zO,t*)=O. From (3.3), (3.7) and condition lo (or Z") it follows that -HH%<N. --~a<%< 
m. If the function S is regarded as a function of two variables .z and z, then t = t* (x0, 20) 
will be its minimum. Therefore the condition LS>O holds at the point (z,,z,,t*). At the same 
time, the following inequality holds for all r>O: 

LS = Lq--Lrp<-8-- ffr-’ 

from which it follows, after choosing a= C@, that LS<O. The resulting contradiction means 
that t* becomes infinite and inequality (3.8) holds for all z>O. 

We prove the inequality --r)<'p in exactly the same manner, therefore the estimate 

holds and (3.5) follows from it. 
The one-dimensional problem (2.61, (2.8) can be reduced to the form (3.1)-(3.4) by a 

straightforward change of notation. Thus for problem 2b we write 

11.~~~,a~--U,-u~,b~--w,,f~--U,,w, 

and then the inequality (3.5) yields an estimate for the perturbation in terms of its initial 
values (constant C,) and in terms of the perturbation of the z component of the velocity 
(constants &and c,). A direct consequence of this is 

Assertion 4. Let us assume that the plane parallel flow (2.1)-(2.3) is Lyapunov stable 
for the solution of problem lb, so that for any number e> 0 there exists 6> 0, such that 
when the inequality 1 w1 I<6 holds at z = 0, then we have the inequality 1 w1 /<e, which 
holds at any instant of time z>O. Then for any value E,, > 0 there exists 6, >0 such 
that if the inequalities 1 Vi !,I WI \ (6, holdat t=O, then we have the estimates j vL 1, I w1 I < 
“0 which hold at any instant of time 't > 0. 

In other words, the Lyapunov stability of the sero solution oftheplane problem (2.7) 
implies the stability for the complete problem (2.7), (2.8). Moreover, the stability of 
solutions of (2.8) does not require the stability of the component u1 in (2.7). 

4.Fundamental results. We can now formulate the following results stemming directly 
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from Assertions 1-4. 

Assertion 5. The slippage flow (2.11, (2.2) with velocity components c., (z. t). K,, (2. i) 
and viscosity v is stable under perturbations belonging to the class 7‘1 if and only if the 
plane parallel flow (2.1)-(2.3) with the profile 

and the same value of the viscosity is stable under plane perturbations. 

Assertion 6. The plane parallel flow (2.1)-(2.3) with velocity profile lJ,(z, t) and 
viscosity v is stable under perturbations belonging to class Tti if and only if another plane 
parallel flow with the profile 

u = U, (2, t) E l.J, (2, ticos 8) 

and higher value of viscosity vr= v/COs@ is stable under plane perturbations. 

(4.1) 

Both assertions refer to type A, and can be regarded as analogues of Squire's theorem 
within the framework of the class of translationally invariant motions. In the special case 
of stationary flows, Assertion 6 yields. 

Assertion 7. If a stationary, plane parallel flow is stable under plane perturbations, 
then it will be even more stable under any translationally invariant perturbations. This 
guarantees the stability on the set T of the perturbations obtained by unifying the classes 
Te for all values of 8. 

The above result refers to the same type as Squire's theorem (set of Assertions A and B). 
The difference lies in the conditional character of Assertion 7. Non-linear stability is not 
guaranteed for all perturbations, but only for those belonging to class T. At the same time, 
Squire's theorem itself can be obtained from Assertion 7 after linearization. The point is 
that the principal simplification of the linear problem (the presence of the principle of 
superposition) makes it possible to construct any other solutions from the translationally 
invariant solutions. We may add here, for clarity, that normal waves (perturbations of the 
flow fZ.l)-(2.3) proportional to espli (kg + In-U)]) , usually studied in the classical 
formulation of Squire's theorem , represent a special case of the translationally invariant 
solutions. 

Thus we see, at the basis of Squire's theorem and of other assertions of this type, there 
lies the "separation" of the one-dimensional problems , characteristic of the translationally 
invariant motions, which occurs in a number of formulations falling considerably outside the 
framework of traditional formulations. 

Notes. lo. In the linear limit Squire's theorem is obtained from Assertion 7, together 
with the complementary statement /5/ on the unimportance of the part of the spectrum omitted 
by Squire. Namely, if we take the perturbation in the form of normal waves, then, using 
Assertion 3 we obtain at once the estimate 1mk <0 for the spectrum of the one-dimensional 
problem (resulting from (2.8)). 

2O. The linearization of the equations of motion does not enable Assertion 6 to be 
amplified for non-stationary flows , so that it will distinguish the most dangerous perturba- 
tions (see Assertion B). This is due to the fact that in case of the perturbations belonging 
to class T8 the fictitious increase in the viscosity is accompanied by a simultaneous "increase" 
in the degree of instability of the flow (4.1). Thus, iftheprofile U,(z, t) is harmonic in t 
with frequency o, then the frequency with which the fictitious profile E,(z, 2) will change is 
equal to O/COS~. The answer to the problem of the most "dangerous" perturbations depends 
here on the distribution of the neutral curve in the plane of the Reynolds andstrouhalnumbers. 

3'. In the case of an ideal fluid the splitting of the equations of motion (the results 
of Sect.1 and 2 at Y=O) remains true, but the unimportance of the one-dimensional problems 
can no longer be proved. For example, in the case of stationary'slippage flow Eq. (2.6) is 
written in the form D (Vi-u') = 0. From the point of view of the plane problem (2.5) thisequation 
means that the quantity V-+-o' is retained in every fluid particle. Since the perturbations 
of the z component of velocity do not, in general, decay when Y =O, the finiteness of the 
displacement of these particles may lead to instability of the "kinematic" type. Such in- 
stability was shown in the linear approximation earlier in f6/, Sect.2. 

do. An interesting situation arises in the case ofthestationary, plane parallel flows 
of an ideal fluid. In the class Tg for any value of 0 we have, for the convex profile (U,,,rf:O), 
a non-linear stability in the sense of /7, 8/ for the plane problem (2.7), while at the same 
time we may have no stability for the one-dimensional problem. In other words, we have 
stability in the norm /7, 8/'forthe components u,~L', but not for v. 

50. In the case of linear wave perturbations and a stationary profile of the basic flow, 
the analogues of Assertion 5 were given in /9, lo/. 

6O. Results similar to those given above can be obtained for the flows of an incompressible 
fluid of the type (2.1), with the density and/or viscosity depending on the z coordinate, and 
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also for a compressible fluid. 
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WAVE IN A BOUNDARY LAYER, 

The development of three-dimensional perturbations of constant frequency 
in a boundary layer on a semi-infinite plate is studied within the frame- 
work of the Navier-Stokes (NS) equations for an incompressible fluid. A 
case in which the Tollmin-Schlichting (TS) /l, 2/ wave has reached a 
point on the plate corresponding to the lower branch of the neutral 
stability curve (NSC), obtained by solving the eigenvalue problem for the 
Orr-Sommerfeld equation, is discussed. An asymptotic solution of the non- 
linear NS equations at large Reynolds numbers in given. According to the 
result obtained, first we have a non-linear process taking place within 
the NSC near its lower branch, for the separated TS wave with an amptitude 
that is not too small, leading to gradual reduction in the wave amplitude. 
Since the Blasius boundary layer is not parallel, the process changes 
when the amplitude increases. Thus the point at which the amplitude of 
the TS wave is at a minimum, lies within the loop of the NSC. Therefore, 
when the experiment is compared with the linear theory based on the Orr- 
Sommerfeld equation, the theory must be corrected. 

Non-linear effects in the theory of the TS waves were first studied in /3/, where an 
equation for the wave amplitude was given. A strict proof of the amplitude equation was 
obtained later in /4/ for the case of perturbations periodic in the longitudinal direction 
of the coordinate. The effect of non-parallelism of the flow on the coefficients of this 
equation was studied in /5/. The amplitude equation was analysed, without taking into account 
*Prikl.Matem.Mekhan.,51,3,410-416,1987 


